University of Oxford Department of Biology

- Genetics behind the Continuous
- Cover Forestry approach do UK
- plantations hold enough genetic
- diversity to face environmental

changes?

IX International Symposium SRUK/CERU Laura Guillardin 02/07/2022

Background

CHALLENGES IN THE 21st-CENTURY FOREST MANAGEMENT

Climate change

Pests &

diseases

Extreme temperatures

Species switch Drought & Fires

Continuous Cover Forestry approach

Multi-purpose forests

Timber production

Biodiversity

Landscape

 $\langle _$

Public access, safety and recreation

Water quality and flooding risk

Carbon management – both in the soil and in standing timber

Cultural values – including archaeology, history and community interest

Laura Guillardin 🔰 @LGuillardin

The Continuous Cover Forestry Challenge

Even-aged **plantations**

First stages of irregular stands

Irregular, mixed stand

The planted trees in UK forests used **in CCF** may **not hold** enough **genetic diversity** to face the current and future disturbances.

We aim to assess the diversity in the gene pool and study its transmission to offspring

UK study sites (5) and genotyping method

Study sites and Species

Pseudotsuga menziesii

Thuja plicata

Laura Guillardin 🔰 @LGuillardin

Genotyping method & SNP discovery pre-step

- 158 SNPs tested, 72 selected; 28K database (Howe et al. 2020)
 - SNP type assay (Fluidigm) Allele-specific PCR

- 80 redcedars chosen from the different sites •
- Molecular marker discovery ullet

Genotyping

• SNP type assay (Fluidigm) - Allele-specific PCR

Assay development and quality control: 72 SNPs

Preliminary population genetic results

PCA (Principal components analysis)

Genetic diversity (GD)

Preliminary population genetic results GBS

Missing data per individual and loci

PCA (Principal components analysis)

NEXT STEPS

Genotype the rest of the sites

Look at different SNPs set scenarios

Measure GD per site and strata

P. menziesii

Genotyping by Sequencing (GBS)

Select the SNPs for downstream analysis

Genotype the rest of the sites

Measure GD per site and strata

ACKNOWLEDGMENTS

laura.guillardin@plants.ox.ac.uk

Dr Gary Kerr

Oxford-John Oldacre Graduate Scholarship

